
Understanding Binary

My Binary Finger Counting page and binary tutorial have now been on the web for 9 years, almost as
long as the web has been around! It's fun to see all the other Binary Finger Counting pages online (I
even saw a T-Shirt! Cool!), but I hope you find this one to be as good as the rest.

I learned how to interpret binary from reading Michael Crichton's Andromeda Strain in college. Now,
you gotta understand that for an artistic, creative-type like myself, suddenly understanding how binary
works was a big deal, worthy of running out of the bathroom stall where I was reading the book and
yelling Eureka! Of course, I immediately got a pen from my dorm room and went back and wrote the
whole process on the bathroom stall walls for future reference.

It was shortly thereafter while discussing with friends how ancient cave artists allegedly kept track of
the number of animals that they had killed by counting on their fingers that I learned Binary Finger
Counting. Programmer extraordinaire/good friend Jim Reneau pointed out to me that if caveman had
only known binary, he could have counted 1023 animals instead of limiting himself to a mere 10 using
10 fingers. He then proceeded to demonstrate to me Binary Finger Counting.

Binary is the language of computers. Everything you type, input, output, send, retrieve, draw, paint,
or place blame on when something doesn't work is, in the end, converted to the computer's native
language- binary. But just how does this whole "on/off", "1/0", "hi/lo" thing work?

Binary is called a Base 2 numbering system (the "bi" in the word binary was a dead giveaway).
Base 2 allows us to represent numbers from our Base 10 system (called the decimal system -
"dec" meaning 10) using only 2 digits - 1 and 0 - in various combinations.

Example of a typical binary number: 10001010
8-bit binary number representing the decimal number 138.

To the computer, binary digits aren't really 1s and 0s. They're actually electrical impulses in either a
(mostly) on state or a (mostly) off state. Just like a switch - either on or off. Since you only have 2
possible switch combinations or electrical possibilities, the computer only needs various combinations
of 2 digits to represent numbers, letters, pixels, etc. These 2 digits, for our sake are visually
represented by 1s and 0s.

Bits, Bytes and Words
Binary numbers can be from 1 digit to infinity. But for our uses, there aren't too many numbers that
we can't live without that can't be represented by 32-bit or 64-bit binary numbers. Let's start with the
basics.

A single binary 1 or a single binary 0 is called a bit, which is short for "binary digit". A single bit by
itself isn't of much use to the casual user, but can do wonders in the hands of a programmer working
at the system level.

 1

http://www.johnselvia.com/binary/binary.html

 2

Take 4 of these bits and slap them together and they now form what's called a nibble (though this
term isn't used very often). A nibble can represent the decimal values 0 to 15 (16 distinct values).

1 0 1 0
4-bit (Nibble) Sample

Take 8 bits and put them together and you have one of the mostly commonly used computer terms in
existence - the byte. A single byte can represent the decimal values 0 to 255 (256 distinct values)
and since every possible character you can type on an English keyboard is represented by a number
less than 128 to the computer (called ASCII codes) , a single letter of the alphabet takes 1 byte to
represent internally (technically, you can represent all the letters of the alphabet using only 7-bits of a
byte, but we won't get into that). When we speak of how much ram a computer has, we say it has
256-megabytes of ram, meaning 256 million bytes (most people nowadays just say 256 megs of ram
and leave off the byte word).

1 0 1 1 1 0 1 0
8-bit (1 Byte) Sample

Place a couple of bytes together to represent a single value and you have a 16-bit word (2 bytes = 16-
bits). A 16-bit word can represent the values 0 to 65535 (65536 distinct values). In the old days 16-
bit words were used to form the addresses of 8-bit computers such as the Commodore 64, the Atari
800, and the Apple IIs, to name a few. These 16-bit words which were big enough to store an address
for a 64k computer consisted of 2 bytes, a high byte and a low byte.

1 BYTE 1 BYTE
1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0

16-bit (2 Byte) Sample

32-bit words are 4 bytes in length. They can represent a value from 0 to 4,294,967,295
(4,294,967,296 distinct values).

1 BYTE 1 BYTE 1 BYTE 1 BYTE
1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1

32-bit (4 Byte) Sample

Pretty big number, but bigger still is the 64-bit word, which is, for you math-deprived people, 8 bytes
in length (8 bytes times 8 bits per byte).

1 BYTE 1 BYTE 1 BYTE 1 BYTE 1 BYTE 1 BYTE 1 BYTE 1 BYTE
1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 11

64-bit (8 Byte) Sample

This whopping monstrosity can represent a number from 0 to 1.844 E+19 if I
understand my calculator correctly.

Okay, enough about bits, bytes and words. Let's figure out how to read a lowly 8-bit binary number.

How to Read a Binary Number
As stated previously, a byte consists of 8 bits, each bit having the possible value of either a 1 or a 0.
Now when deciphering binary numbers, don't think of the 1 or 0 as an actual value itself, but a flag to
determine whether it has any importance in the calculation of the final result. Lost? Let's look at an
example:

Example binary number: 10001010
Binary representation of decimal 138.

Any time you're going to interpret a binary number, set something up on a piece of paper that looks
like this-

128 64 32 16 8 4 2 1
1 0 0 0 1 0 1 0

Now, look at those numbers above the boxes with the red 1s and 0s. Those are decimal numbers
representing powers of 2. Starting from the left and going to the right they are 2 to the 7th power
(2^7), 2 to the 6th power (2^6), 2 to the 5th power (2^5), 2 to the 4th power (2^4), 2 to the 3rd
power (2^3), 2 to the 2nd power (2^2), 2 to the 1st power (2^1) and 2 to the 0th power (2^0):

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

It just so happens that with powers of 2, each successive number is double the one before it. In other
words if 2^0 is equal to 1 then 2^1 = 2 and 2^2 = 4 and 2^3 = 8 and so on. Here are the values of
the powers of 2 going from 2^7 down to 2^0:

128 64 32 16 8 4 2 1

These are the values that are above the boxes. Now the actual binary number itself consists of 1s and
0s in the blue boxes which somehow magically represents the decimal number 138. How do we get 138
from 10001010? In the binary number when you see a 1, multiply that 1 times the value that is
directly over it. Where you see a 0 in the box, just ignore it. So looking at our graphic again,

128 64 32 16 8 4 2 1
1 0 0 0 1 0 1 0

we see that there is a 1 under the 128, a 1 under the 8, and a 1 under the 2. If we add only those
numbers which have a binary 1 in the box under them, we come up with 128+8+2 which equals 138.

Here's another example:

128 64 32 16 8 4 2 1
1 1 1 0 0 1 1 0

Thus, binary 11100110 is equal to 128+64+32+4+2 which is decimal 230

 3

And another one:

128 64 32 16 8 4 2 1
1 0 0 0 0 0 0 1

Thus, binary 10000001 is equal to 128+1 which is decimal 129.

Hope this makes more sense than when you started. Be sure to check out the section on Binary Finger
Counting to learn how to count to 31 on one hand. See ya!

Finger Counting

Binary Finger Counting: 1 to 7
The thumb represents the value 1, the index is double that, so it's 2, and the middle is
double the index, so it's 4, etc. This is key to understanding and fluently counting in
binary on your fingers.

To make the number 3 for instance, you have to combine a 2 finger and a 1 finger
(2+1=3).

For a Shockwave version of this (168k), click HERE
Copyright 1995 By: John Selvia

Binary Finger Counting: 8 to 13
The thumb represents the value 1, the index is double that, so it's 2, and the middle is
double the index, so it's 4, etc. This is key to understanding and fluently counting in
binary on your fingers.

To make the number 11 for instance, you have to combine an 8 finger, a 2 finger and a
1 finger (8+2+1=11).

 4

http://www.johnselvia.com/binary/BINARY_FINGER_SW.html
mailto:ivanjs@johnselvia.com

Binary Finger Counting: 14 to 19
The thumb represents the value 1, the index is double that, so it's 2, and the middle is
double the index, so it's 4, etc. This is key to understanding and fluently counting in
binary on your fingers.

To make the number 18 for instance, you have to combine a 16 and a 2 finger
(16+2=18).

Binary Finger Counting: 20 to 25
The thumb represents the value 1, the index is double that, so it's 2, and the middle is
double the index, so it's 4, etc. This is key to understanding and fluently counting in
binary on your fingers.

To make the number 23 for instance, you have to combine the 16 finger, the 4 finger,
the 2 finger and the 1 finger (16+4+2+1=23).

Binary Finger Counting: 26 to 31
The thumb represents the value 1, the index is double that, so it's 2, and the middle is
double the index, so it's 4, etc. This is key to understanding and fluently counting in
binary on your fingers.

To make the number 28 for instance, you have to combine the 16 finger, the 8 finger,
and the 4 finger (16+8+4=28).

 5

So How Do We Get 1023?
Take a look at this illustration-

Once you've used all 5 fingers on the right hand, start with the pinky of t

 6

Understanding Hexadecimal

Ah, hexadecimal. If you've ever worked with colors in web page design, you've proably seen something
like '<body bgcolor="#A09CF3"> or something to that effect. Somehow, that 6 digit hexadecimal
number is equal to a lavender or light purple color. What on earth does 'A09CF3' mean? Before we
explain that, let's look at what hexadecimal (hex) is.

Our decimal system, as mentioned in my Binary Tutorial, is a base-10 system, meaning we can count
to any number in the universe using only 10 symbols or digits, 0 thru 9.

For the computer, a 10-based system probably isn't the most efficient system, so the computer uses
binary (in reality, it uses microscopic switches which are either on or off, but we represent them using
the digits '1' and '0'). Unfortunately, binary isn't very efficient for humans, so to sort of find a happy
middle ground, programmers came up with hexadecimal.

Hexadecimal is a base-16 number format (hex=6, decimal=10). This means that instead of having only
the digits from '0' to '9' to work with like our familiar decimal, or '1' and '0' like binary, we have the
digits '0' to '15'. It also means that we are using the powers of 16, instead of the powers of 2 like in
binary.

Digits '0' thru '9' are the same as our decimal system, but how can 10 thru 15 be digits? Well, since
there are no 10 thru 15 symbols, we have to invent some.
To count beyond 9 in hexadecimal, we use A thru F of the alphabet:

DECIMAL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEXADECIMAL 0 1 2 3 4 5 6 7 8 9 A B C D E F

As soon as you count over 9 in hex, new digits take over. A=10, B=11, C=12, D=13, E=14 and F=15.
Alright, so we have 6 new digits we never saw before. What can we do with them? Let's look at some
samples-
$0F (Pronounced "OH EFF" or "ZERO EFF")

he
left hand. The pinky would be double the pinky of the right hand, so its
value would be 32.

For a Shockwave version of this (168k), click HERE
Copyright 1995 By: John Selvia

So to
represent the
number 449
on your
fingers:

And to represent
the number 257:

http://www.johnselvia.com/binary/BINARY_FINGER_SW.html
mailto:ivanjs@johnselvia.com
http://www.johnselvia.com/hex1.html
http://www.johnselvia.com/binary/binary.html

 7

Note the use of the $ to show hex. You'll also see a hex number like this:

0x0F

In fact, the '0x' in front of a hex number is more current than the '$'. The '$' is sort of old school.
Whether you use a '$' or a '0x', it tells you that you're working with a hex number, not a decimal
one.Why use a special symbol to denote hex? Isn't it obvious that '0F' isn't an ordinary decimal number?
Sure, but what if you had this number:

5396

Hmmm. How do you know whether that is a decimal 5396 or a hex 5396? See, not all hex numbers will
have an 'A' thru 'F' in them. Many do, but not all. But as soon as we put a '$' or a '0x' in front of that
number

$5396 or 0x5396

We know it's a hexadecimal number. Look, I'm already tired of typing it both ways, so I'm going to keep
using the '$' to denote hex instead of showing you both methods from now on. If you feel more
comfortable with the '0x', feel free to substitute that for the rest of the tutorial.

Here's another:

$A0FF (Pronounced "A OH EFF EFF" or "A ZERO EFF EFF")

And here's some others (yes, they're legitimate hex numbers):

(Numbers in parentheses are the decimal versions)
$BEAD (48,813) $DEAD (57,005) $FEED (65,261) $DEAF (57,007) $FADE (64,222) $BABE (47,806)
$ABBA (43,962) $DEED (57,069) $FACE (64,206) $BEEF (48,879) $CAD (3,245) $ADD (2,781)
$CAFE (51,966) $CAB (3,243) $BAD (2,989) $ACE (2,766) $FAD (4,013) $BED (3,053)

WHERE'S THE HEX??!?

Now, you may be wondering, "Hey, it's all well and good that you're showing us hex examples, but how
do we go about translating those hex numbers into decimal?"

Well, I'll tell you... (and to keep things simple, we'll stick to smaller numbers for now):

Let's look at a typical small decimal number.

235

Now, in decimal, the above number is equivalent to:

2 x 100 + 3 x 10 + 5 or 200 + 30 + 5

Easy enough. Now look at a slightly larger decimal number:

1,236

 8

This is equivalent to:

1 x 1000 + 2 x 100 + 3 x 10 + 6 or 1,000 + 200 + 30 + 6

Well, hex numbers follow a similar pattern where each digit is in a "place". But instead of 10's place or
100's place or 1000's place, hex uses the following progression (from right to left):

4096's
Place 256's Place 16's Place 1's Place

Then, to translate a hex number such as $A0FF, you set up a chart like this:

4096 256 16 1

A 0 F F

Remember that hex 'A' actually is equal to decimal 10, and hex 'F' is actually decimal 15 (look at the
chart above if you just felt your brain drop into your underwear and are totally lost. I don't know where
that image came from...). Here's our revised chart:

4096 256 16 1

10 0 15 15

Now multiply 10 times 4096, then 0 times 256, then 15 times 16, then 15 times 1. Then add the results
(10 times 4096=40960 + 0 times 256=0 + 15 times 16=240 + 15 times 1=15 which comes out to
decimal 41215.

SAY WHAT?!?!?

Still with me? No? Here's a smaller example for the 'larger example impaired':

2 Digit Hex Number: $B9

16's Place 1's
Place

B 9

Remember that hex 'B' = 11 and hex '9' is still just 9:

16's Place 1's Place

11 9
Or

16 1

11 9

Since 'B' = 11, you multiply 11 times 16 which equals 176, then add a 9 times 1.

The final translation of $B9 to decimal would thus be 11 times 16 + 9 times 1=decimal 185.

 9

Another 4 Digit Hex Number: $FEBC

4096 256 16 1

F E B C

Remember that hex 'F' = 15, hex 'E' = 14, hex 'B'=11, and hex 'C' = 12:

4096 256 16 1

15 14 11 12

So multiply 15 times 4096, 14 times 256, 11 times 16, and 12 times 1 and add the results-

15 x 4096 =61440 + 14 x 256=3584 + 11 x 16=176 + 12 x 1 = 65212.

WHAT ABOUT REALLY LARGE HEX NUMBERS?!?!?

To translate (or convert as the big boys say) large hex numbers, you need to know more powers of 16.
We've already seen the first four powers of 16: 4096 (16^3), 256 (16^2), 16 (16^1), and 1 (16^0).
Whipping out my calculator (you think I studied multiplications tables in school larger than 12?!?!?), I
find that after 4096 (16^3), the powers of 16 are:

16^7 16^6 16^5 16^4 16^3 16^2 16^1 16^0

268,435,456 16,777,216 1,048,576 65536 4096 256 16 1

Whew! Big numbers!!! So if we had a hex number like:

$FE973BDC

We could convert it by setting up the table like this:

268,435,456 16,777,216 1,048,576 65536 4096 256 16 1

F E 9 7 3 B D C

This is going to be a big number. You'll definitely want your calculator for this one. Here goes:

Convert the hex digits to decimal digits using the chart at the top:

268,435,456 16,777,216 1,048,576 65536 4096 256 16 1

15 14 9 7 3 11 13 12

Multiply the decimal value in the bottom box by the powers of 16 values in the top box:

15 x 268,435,456 + 14 x 16,777,216 + 9 x 1,048,576 + 7 x 65,536 + 3 x 4,096 + 11 x 256 + 13 x 16
+ 12 x 1 =

4,026,531,840 + 234,881,024 + 9,437,184 + 458,752 + 12,288 + 2,816 + 208 + 12 =4,271,324,124.

 10

Ow! That hurts my brain. I'm resting for awhile...

HEXADECIMAL AND BINARY'S RELATIONSHIP

Alright, I'm back.

There is a wonderful (if you're a geek like me) relationship between hexadecimal and binary that might
not be readily apparent. In fact, they're so closely tied together, that many programmers learn both
equally well (especially assembler programmers). Let's take a look.

Here's a binary number (again, review my Binary Tutorial if you're a bit rusty. Get it? A 'bit' rusty. I kill
me):

#10111101
Notice the pound sign to signify that it is a binary number so we don't confuse decimal 10,111,101 with binary 10111101.

So, based on our tutorial, we set up something like this first:

128 64 32 16 8 4 2 1

1 0 1 1 1 1 0 1

Now, add together all the numbers in the top boxes that have a 1 below them and ignore the numbers
with zeroes below them.

128+32+16+8+4+1=189 in decimal.

Now if you split that little 8-bit binary number into 2 sets of 4 bits, let's call them the leftmost 4 bits and
the rightmost 4 bits, we get

8 4 2 1 8 4 2 1

1 0 1 1 1 1 0 1

What the?!? Notice, we dumped the 128, 64, 32 and 16, because we're now working with 2 sets of 4 bit
numbers instead of 1 big 8-bit number.

Wow that makes it so much easier...

To convert our binary number to hex, figure out what the leftmost 4 bits is equal to, and the rightmost 4
bits.

LEFTMOST 1011 =8+2+1 =11 =$B

RIGHTMOST 1101 =8+4+1 =13 =$D

And since 11 decimal = $B hex and 13 decimal = $D hex, the final hexidecimal conversion of binary
#10111101 = $BD.

http://www.johnselvia.com/binary/binary.html

 11

For larger binary numbers, it still works. Take this 16 bit number:

#1011010010100111

Break it up into four 4-bit sets:

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1

And add up the numbers which have a 1 below them, but be sure to keep it in 4 different sets:

8+0+2+1 0+4+0+0 8+0+2+0 0+4+2+1

11 4 10 7

B 4 A 7

So #1011010010100111 is equal to $B4A7 hex and 46247 decimal.

Here's a 32-bit binary number to convert to hex:

#11010100010100111111011100010101

Break it up into eight 4-bit chunks...

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1

Add up all numbers that have a 1 below them:

8+4+
0+1

0+4+
0+0

0+4+
0+1

0+0+
2+1

8+4+
2+1

0+4+
2+1

0+0+
0+1

0+4+
0+1

13 4 5 3 15 7 1 5

D 4 5 3 F 7 1 5

So binary 11010100010100111111011100010101 is equal to $D453F715 hex. Cool.

 12

Here are the numbers 0 to 255 in decimal, hex and binary.
DEC HEX BIN DEC HEX BIN DEC HEX BIN DEC HEX BIN
0 0 00000000 1 1 00000001 2 2 00000010 3 3 00000011

4 4 00000100 5 5 00000101 6 6 00000110 7 7 00000111

8 8 00001000 9 9 00001001 10 A 00001010 11 B 00001011

12 C 00001100 13 D 00001101 14 E 00001110 15 F 00001111

16 10 00010000 17 11 00010001 18 12 00010010 19 13 00010011

20 14 00010100 21 15 00010101 22 16 00010110 23 17 00010111

24 18 00011000 25 19 00011001 26 1A 00011010 27 1B 00011011

28 1C 00011100 29 1D 00011101 30 1E 00011110 31 1F 00011111

32 20 00100000 33 21 00100001 34 22 00100010 35 23 00100011

36 24 00100100 37 25 00100101 38 26 00100110 39 27 00100111

40 28 00101000 41 29 00101001 42 2A 00101010 43 2B 00101011

44 2C 00101100 45 2D 00101101 46 2E 00101110 47 2F 00101111

48 30 00110000 49 31 00110001 50 32 00110010 51 33 00110011

52 34 00110100 53 35 00110101 54 36 00110110 55 37 00110111

56 38 00111000 57 39 00111001 58 3A 00111010 59 3B 00111011

60 3C 00111100 61 3D 00111101 62 3E 00111110 63 3F 00111111

64 40 01000000 65 41 01000001 66 42 01000010 67 43 01000011

68 44 01000100 69 45 01000101 70 46 01000110 71 47 01000111

72 48 01001000 73 49 01001001 74 4A 01001010 75 4B 01001011

76 4C 01001100 77 4D 01001101 78 4E 01001110 79 4F 01001111

80 50 01010000 81 51 01010001 82 52 01010010 83 53 01010011

84 54 01010100 85 55 01010101 86 56 01010110 87 57 01010111

88 58 01011000 89 59 01011001 90 5A 01011010 91 5B 01011011

92 5C 01011100 93 5D 01011101 94 5E 01011110 95 5F 01011111

96 60 01100000 97 61 01100001 98 62 01100010 99 63 01100011

100 64 01100100 101 65 01100101 102 66 01100110 103 67 01100111

104 68 01101000 105 69 01101001 106 6A 01101010 107 6B 01101011

108 6C 01101100 109 6D 01101101 110 6E 01101110 111 6F 01101111

112 70 01110000 113 71 01110001 114 72 01110010 115 73 01110011

116 74 01110100 117 75 01110101 118 76 01110110 119 77 01110111

120 78 01111000 121 79 01111001 122 7A 01111010 123 7B 01111011

124 7C 01111100 125 7D 01111101 126 7E 01111110 127 7F 01111111

128 80 10000000

129 81 10000001 130 82 10000010 131 83 10000011

 13

132 84 10000100 133 85 10000101 134 86 10000110 135 87 10000111

136 88 10001000 137 89 10001001 138 8A 10001010 139 8B 10001011

140 8C 10001100 141 8D 10001101 142 8E 10001110 143 8F 10001111

144 90 10010000 145 91 10010001 146 92 10010010 147 93 10010011

148 94 10010100 149 95 10010101 150 96 10010110 151 97 10010111

152 98 10011000 153 99 10011001 154 9A 10011010 155 9B 10011011

156 9C 10011100 157 9D 10011101 158 9E 10011110 159 9F 10011111

160 A0 10100000 161 A1 10100001 162 A2 10100010 163 A3 10100011

164 A4 10100100 165 A5 10100101 166 A6 10100110 167 A7 10100111

168 A8 10101000 169 A9 10101001 170 AA 10101010 171 AB 10101011

172 AC 10101100 173 AD 10101101 174 AE 10101110 175 AF 10101111

176 B0 10110000 177 B1 10110001 178 B2 10110010 179 B3 10110011

180 B4 10110100 181 B5 10110101 182 B6 10110110 183 B7 10110111

184 B8 10111000 185 B9 10111001 186 BA 10111010 187 BB 10111011

188 BC 10111100 189 BD 10111101 190 BE 10111110 191 BF 10111111

192 C0 11000000 193 C1 11000001 194 C2 11000010 195 C3 11000011

196 C4 11000100 197 C5 11000101 198 C6 11000110 199 C7 11000111

200 C8 11001000 201 C9 11001001 202 CA 11001010 203 CB 11001011

204 CC 11001100 205 CD 11001101 206 CE 11001110 207 CF 11001111

208 D0 11010000 209 D1 11010001 210 D2 11010010 211 D3 11010011

212 D4 11010100 213 D5 11010101 214 D6 11010110 215 D7 11010111

216 D8 11011000 217 D9 11011001 218 DA 11011010 219 DB 11011011

220 DC 11011100 221 DD 11011101 222 DE 11011110 223 DF 11011111

224 E0 11100000 225 E1 11100001 226 E2 11100010 227 E3 11100011

228 E4 11100100 229 E5 11100101 230 E6 11100110 231 E7 11100111

232 E8 11101000 233 E9 11101001 234 EA 11101010 235 EB 11101011

236 EC 11101100 237 ED 11101101 238 EE 11101110 239 EF 11101111

240 F0 11110000 241 F1 11110001 242 F2 11110010 243 F3 11110011

244 F4 11110100 245 F5 11110101 246 F6 11110110 247 F7 11110111

248 F8 11111000 249 F9 11111001 250 FA 11111010 251 FB 11111011

252 FC 11111100 253 FD 11111101 254 FE 11111110 255 FF 11111111

